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Abstract

This paper considers the existence of the generalized solution to the Cauchy problem for a

class of generalized Zakharov equation in three dimensions. By a priori integral estimates and

Galerkin method, one has the existence of the global generalized solution to the problem.
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1. Introduction

In the past decade, the Zakharov system was studied by many authors [3-7,10-12]. Morris,

Kara and Biswas study the Zakharov equation with power law nonlinearity. The traveling wave

hypothesis is applied to obtain the 1-soliton solution of this equation. The multiplier method from

Lie symmetries is subsequently utilized to obtain the conservation laws of the equations [10].

Bhrawy, Abdelkawy and Biswas study the Zakharov equation by the aid of Jacobi’s elliptic

function expansion method and exact periodic solutions are extracted [11]. Agafontsev and

Zakharov study numerically the statistics of waves for generalized one-dimensional Nonlinear

Schrödinger equation that takes into account focusing six-wave interactions, dumping and

pumping terms [12].

Special interest was recently devoted to quantum corrections to the Zakharov equations for

Langmuir waves in a plasma. First considered in one space dimension [1]. The model was then

extended to two and three dimensions [2].
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where 1: d dE    is the slowly varying amplitude of the high-frequency electric field, and

1: dn    denotes the fluctuation of the ion-density from its equilibrium. the parameter 

defined as the square ratio of the light speed and the electron Fermi velocity is usually large. In

contrast, the coefficient  that measures the influence of quantum effects is usually very small

[9].

the quantum Zakharov system was studied by some authors [3-7]. In this paper, we are

interested in studying the following generalized modified Zakharov system in dimension three.

2( ) ( ) ( ) (| | ) ,tiE E E nE E f E E           (1)

2 2| | .ttn n E n    (2)

with initial data

0 0 1( ,0) ( ), ( ,0) ( ), ( ,0) ( ).tE x E x n x n x n x n x   (3)

where 3
2 3

3 1
1( , , ) :E E E E    , 3 1:n    , 1 2 3

3( , , )x x x x  .

Now we state the main results of the paper.

Theorem 1. Suppose that

(i) 2 13 3 1 3
0 0 1( ) ( ), ( ) ( ), ( ) ( ).E x H n x H n x H     

(ii) ,( ) ( ), | ( ) | | ( ) ( ) | .| |f C f M f f L           Where 0M  ,
2

0
3

  , 0L  .

Then there exists global generalized solution of the initial problem (1)-(3).
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1 1, 3
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n x t L H W H

n x t L H W H

    

    

     

 

 

 

 

 

 

To study generalized solution of the system (1)-(3), we transform it into the following form

(notice that ( ) ( )E E E      )

2( 1) ( ) ( ) (| | ) ,tiE E E nE E f E E           (4)

0,tn    (5)

2( | | ) .t n E n     (6)

with initial data

0 0 0( ,0) ( ), ( ,0) ( ), ( ,0) ( ).E x E x n x n x x x    (7)

where 0 satisfying 0 1.n 
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For the sake of convenience of the following contexts, we set some notations. For 1 q   ,

we denote ( )q dL  the space of all q th power integrable functions in d equipped with norm

( )
· q dL 

‖‖ . We write ( )s dH  instead of the Sobolev space ,2 ( )s dH  . Let ( , ) ( ) ( )
n

f g f x g x dx  ,

where ( )g x denotes the complex conjugate function of ( )g x . And we use C to represent various

constants that can depend on initial data. In Section 2, we establish a priori estimations. In

Section 3, we state the existence of global generalized solution.

2. A priori estimations

Taking the inner product of (4) and E , and then taking the imaginary part, we get
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Lemma 1. Suppose that 3 3 22 1
0 0 0

3( ) ( ), ( ) ( ), ( ) ( )x H n x HE x L     and ( ) ( )f C   .

Then for the solution of problem (4)-(7) we have ( ) (0),t A A where
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Proof. Taking the inner product of (4) and tE . Since
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From (5) and (6), we obtain



51

2

2 2 2 2

2 2 2

2

2 2 2 2

| | | | | |

1
( ) ( )

2

1 1
( ) .

2 2

t

t L

t L L L L

n E dx E dx E dx

d
n n dx n n dx

dt

d d
n n n dx n n

dt dt

 

   

 

     

         

          
 

  

 



(9)

Combining inequality (8) with (9) we obtain

2 2 2
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Lemma 1 is proved.

Lemma 2. Suppose that

(i) 2 1
0 0

3 3 2 3
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    

(ii) ( ) ( ), | ( .) |f C f M     Where
2

0, 0 .
3

M   

Then we have

2 2 2 2 2 2

2 2 2 2 2 2( ) .
L L L L L L

E E E n n C          ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖‖ ‖ ‖

Proof. By Hӧlder inequality, Young inequality and Lemma 1 we have 
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(10)

and noticing that ( ) ( ), | ( ,) |f C f M     we get
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Using Gagliardo-Nirenberg inequality and noticing that
2

0
3

  , we write
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Note that from Lemma 1 and eq. (10)-(12), one has
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2 2 2
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( 1) ( )
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| (0) | .
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n n C
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     A

Since  is larger than 1, we thus get Lemma 2.

Lemma 3. Suppose that

(i) 2 1
0 0

3 3 2 3
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    

(ii) ( ) ( ), | ( .) |f C f M     Where
2

0, 0 .
3

M   

Then we have

2 1 2 .t t tH H H
E n C    

Proof. Taking the inner product of eq. (4) and V , (5) and v , (6) and  , it follows that

   2( 1) ( ) , ( ) (| | .) ,tiE E E V nE E f E E V         (13)

 , 0,tn v   (14)

   2, ( | | ) , .t n E n       (15)

where  2
0, iv v H ( 1, 2,3)i  , 1 2 3( , , )V v v v .

By Hӧlder inequality, it follows from eq. (13) that 
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(16)

By Gagliardo-Nirenberg inequality, we know that
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Hence from (16) we get
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53

Using Hӧlder inequality, from eq. (14), there is 

      2 2 1
0

, , , ,t L L H
n v v v v C v        (18)

From eq. (15) and Hӧlder inequality, we have 

       

   

4

2 2

2 2 2 2 2

2
0

2

2

2

, , | | , ,

| | , ,

.

L L

L L L L

t

L L

H

V n V E V n V

n EV V n V

n V nE VV

C V

      

   

 



  

     
(19)

Hence from (17)-(19), one obtain Lemma 3.

3. The existence of generalized solution

In this section, we formulate the proof of Theorem 1. First we give the definition of

generalized solution for problem (4)-(7).

Definition 1. The functions 1, 21( , ) ( ; ) ( ; ),E x t L H W H      

1 1, 1( , ) ( ; ) ( ; ),n x t L H W H       1, 22( , ) ( ; ) ( ; ),x t L L W H        are called

generalized solution of problem (4)-(7), if they satisfy the following integral equality

   

     

 

 
 

{1,2 3} {1,2 3}

2

2

, ( 1) , ( 1) , ,

, , (| | ) , , 1,2,3,

, 0,

( | | )
, , , 1, 2,3.

m
mt m

m mm

m

t

t

m

m

E Ev v
iE v E v

x x x x

v
nE v E f E E v m

x

n v

nn E
v v

x x



  



 

 













 

 

     
         

      

  
            



   
    

 





 
， ，

with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ),t t tE E x n n x x     

Next, we give two lemmas recalled in [8].

Lemma 4. Let 0 1, ,B B B be three reflexive Banach spaces and assume that the embedding

0B B is compact. Let

0 1

0 1 0 1((0, ); ), ((0, ); ) , ,1 , .p pV
W V L T B L T B T p p

t

 
        

 

W is a Banach space with norm
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0 1
0 1((0, ); ) ((0, ); )

.p ptW L T B L T B
V V V 

Then the embedding 0 ((0, ); )pW L T B is compact.

Lemma 5. Let  be an open set of n and let , ( ), 1p ng g L p     , such that

( )
a.e. in and .pL

g g g C  
  

Then g g  weakly in ( )pL  .

Now, one can estimate the following theorem.

Theorem 2. Suppose that

(i) 2 1
0 0

3 3 2 3
0( ) ( ), ( ) ( ), ( ) ( ).x H n x HE x L    

(ii) ,( ) ( ), | ( ) | | ( ) ( ) | .| |f C f M f f L           Where 0M  ,
2

0
3

  , 0L  .

Then there exists global generalized solution of the initial value problem (4)-(7).

1

1

2

1, 2

1, 1

1, 2

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ),

( , ) ( ; ) ( ; ).

E x t L H W H

n x t L H W H

x t L L W H

    

    

    

 

 

 

 

 

 

Proof. By using Galerkin method, choose the basic periodic functions { ( )}j x as follows:

2
0( ) ( ), ( ) ( ), 1, 2, , .j j j jx x x H j l        

The approximate solution of problem (4)-(7) can be written as

1 1 1

( , ) ( ) ( ), ( , ) ( ) ( ), ( , ) ( ) ( ),
l l l

l l l
j j j j j j

j j

l l

j

lE x t t x x t t x n x t t x      
  

    

where

 2 31 1 2 3, , , ( ) ( ( ), ( ), ( )).l l l l
j j
l l l

j j
lE E E E t t t t    

 1 1 2 332, , , ( ) ( ( ), ( ), ( )).l l l l
j j j jt t t t        

and  is a 3-dimensional cube with 2D in each direction, that is,

31 2{ ( , , ) || | 2 , 1, 2,3}.ix x x x x D i     According to Galerkin's method, these undetermined

coefficients ( )j
l t , ( )j

l t and ( )j
l t need to satisfy the following initial value problem of the

system of ordinary differential equations
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(20)

 , 0, 1, 2, , ,l l
tn l     (21)

 
 2( | | )

, , , 1,2,3,

l

l
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l nn E

x x




 



   
   
     
  
 

(22)

with initial data

0 0 0 0 0 0| ( ), | ( ), | ( ),l l l l l l
t t tE E x n n x x      (23)

Suppose

12 2

0 0 0 0 0 0( ) ( ), ( ) ( ), ( ) ( ), .H Hl l Llx E x n x n x x x lE     

Similarly to the proof of Lemma 1-3, for the solution ( , )lE x t , ( , )ln x t , ( , )l x t of problem (20)-

(23), we can establish the following estimations

  22 1 12

22 2 2 2

· ,l l l l l

L HL LH
EE E n C        (24)

2 2 1
.l l l

t t tH H H
n CE 

  
   (25)

where the constant C is independent of l and D . By compact argument, some subsequence of

 , ,l l lE n  , also labeled by l , has a weak limit  , ,E n  . More precisely

1in ( ; ) weakly star,lE E L H   (26)

1in ( ; ) weakly star,ln n L H   (27)

2in ( ; ) weakly star.l L L    

Eq. (25) imply that

2in ( , ) weakly star,l
t tE E L H    (28)

1in ( , ) weakly star,l
t tn n L H   

2in ( , ) weakly star.l
t t L H    

Moreover, let us note that the following maps are continuous.

1 43 3( ) ( ), ,H L u u  

1 1 23 3 3( ) ( ) ( ), ( , ) .H H L u v uv    

It then follows from eq. (26) and (27) that
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2 2in ( , ) weakly star,lE w L L   (29)

2in ( , ) weakly star.l ln E z L L   (30)

First, we prove
2

w E . Let  be any bounded subdomain of
3 . We notice that

1 4the embedding ( ) ( ) is compact,H L  

and for any Banach space X ,

2the embedding ( , ) (0, ; ) is continuous.L X L T X  

Hence, according to eq. (26), (28) and Lemma 4, applied to 1
0 ( ),B H  4 2

1( ), ( )B L B H     ,

and says that some subsequence of |lE  (also labeled by l ) converges strongly to |E  in

2 4(0, ; ( ))L T L  . So we can assume that

2 4strongly in (0, ; ( )),l
locE E L T L  (31)

and thus

a.e. in [0, ] .lE E T 

Then, using Lemma 5 and eq. (29) imply that
2

w E .

Second, we prove z nE . Let  be some test function in 2 1(0, ; ),L T H 3supp    .

   30 0 0
( ) .

T T T
l l l l ln E nE dxdt n E E dxdt n n E dxdt  

 
         

On one hand

  2 42 2 4 (0, ; ( ))(0, ; ( )) (0, ; ( ))0
.

T
l l l l

L T LL T L L T L
n E E dxdt n E E 

  
    ‖ ‖

Since  is bounded, we deduce from eq. (27) and (31) that

 
0

0 ( ).
T

l ln E E dxdt l


    

On the other hand, let us note that 1 2(0, ; )E L T L  . In fact

1 2 2 4 2 4(0, ; ) (0, ; ) (0, ; )
.

L T L L T L L T L
E E   ‖ ‖

Therefore we deduce from eq. (27) that

0
( ) 0 ( ).

T
ln n E dxdt l


   

Thus l ln E nE in 2 1(0, ; )L T H  . So z nE .

Third, let  be some test function in 2 1(0, ; ),L T H 3supp    .
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Since  is bounded, we deduce from eq. (26) and (31) that
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On the other hand
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Since  is bounded, we deduce from eq. (26) and (31) that

 3

2 2

0
(| | ) (| | ) 0 ( ).

T
lf E f E E dxdt l   

Thus 2 2(| | ) (| | )l lf E E f E E in 2 1(0, ; )L T H  .

Hence taking l  from eq. (20)-(23), by using the density of j in 2
0 ( )H  we get the

existence of local generalized solution for the periodic initial value problem (4)-(7). letting

D  , the existence of local solution for the initial value problem (4)-(7) can be obtain. By the

continuation extension principle and a prior estimates, we can get the existence of global

generalized solution for problem (4)-(7).

We thus complete the proof of Theorem 2. Hence one can get Theorem 1.

Conclusion

This paper considers the existence of the generalized solution to the Cauchy problem for a

generalized Zakharov equation in three dimensions by a priori integral estimates and Galerkin

method, one has the existence of the global generalized solution to the problem.
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Discussion

One can regard (1)-(2) as the Langmuir turbulence parameterized by (0 1)    and study

the asymptotic behavior of the systems (1)-(2) when  goes to zero.
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